放物線と双曲線の違い
放物線対双曲線
放物線と双曲線は、円錐の2つの異なるセクションです。数学者の違いだけでなく、誰もが理解できる非常に簡単な方法で、数学的説明の相違点を扱うことも、相違点を扱うこともできます。この記事では、これらの違いを簡単に説明します。まず、円錐体である立体図形を平面で切断すると、得られる断面を円錐断面と呼ぶ。円錐の断面は、円錐、楕円、双曲線、および放物線であり、円錐の軸と平面との交差角度に依存する。パラボラと双曲線は両方とも曲線であり、曲線の腕や枝が無限に続くことを意味します。彼らは円や楕円のような閉曲線ではありません。
<! - 1 - >
放物線放物線は、平面が円錐面に平行に切断されたときの曲線です。放物面では、焦点を通り、ダイレクトリズムに垂直な線を「対称軸」と呼びます。 「放物線が「対称軸」上の点と交差するとき、それは「頂点」と呼ばれます。 「すべての放物線は、特定の角度で切断されるのと同じ形になっています。偏心が1であることが特徴です。 「これがすべて同じ形であるが、サイズが異なる可能性がある理由である。
<!放物線は、方程式y 2 = X 999によって与えられる。平面内に存在する点の集合が、指向性から等距離であり、与えられた直線であり、焦点から等距離にあるとき、a与えられた点が固定されているので、放物線と呼ばれます。パラボラには多くの実用的な用途がある。それらは、ミサイル、自動車のヘッドライト反射器、望遠鏡、レーダー受信機、および衛星放送の経路の設計に使用されます。
<! - 3 - >双曲線
双曲線は、平面が軸にほぼ平行に切断されたときの曲線です。双曲線は、軸と平面の間に多くの角度があるのと同じ形ではありません。 「頂点」は、最も近い2つのアーム上の点である。腕をつなぐ線分を「長軸」といいます。 "
放物線では、枝とも呼ばれる曲線の2本の腕が互いに平行になります。双曲線では、2つのアームまたは曲線が平行にならない。双曲線の中心は長軸の中間点です。双曲線は、方程式XY = 1によって与えられる。平面内に存在する点の集合の2つの固定焦点または点の間の距離の差が正の定数である場合、双曲線と呼ばれる。要約:平面内に存在する点の集合が、指令線から等距離にあり、与えられた直線が、焦点から等距離にあるとき、固定された所与の点は、放物線と呼ばれる。ある平面内に存在する点の集合と2つの固定された点または点との間の距離の差が正の定数である場合、双曲線と呼ばれる。
すべての放物線は、サイズにかかわらず同じ形状です。すべての双曲線は異なる形をしています。放物線は方程式y2 = Xで与えられます。双曲線は方程式XY = 1によって与えられる。放物線では、2つのアームは互いに平行になるが、双曲線ではそれらは交差しない。